Expectation-Maximization-Aided Hybrid Generalized Expectation Consistent for Sparse Signal Reconstruction

نویسندگان

چکیده

The reconstruction of sparse signal is an active area research. Different from a typical i.i.d. assumption, this paper considers non-independent prior group structure. For more practical setup, we propose EM-aided HyGEC, new algorithm to address the stability issue and hyper-parameter facing other algorithms. instability problem results ill condition transform matrix, while unavailability hyper-parameters ground truth that their values are not known beforehand. proposed built on paradigm HyGAMP (proposed by Rangan et al.) but replace its inner engine, GAMP, matrix-insensitive alternative, GEC, so first solved. second issue, take expectation-maximization as outer loop, together with engine learn value hyper-parameters. Effectiveness also verified means numerical simulations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Space-Alternating Generalized Expectation-Maximization Algorithm

The expectation-maximization (EM) method can facilitate maximizing likelihood functions that arise in statistical estimation problems. In the classical EM paradigm, one iteratively maximizes the conditional log-likelihood of a single unobservable complete data space, rather than maximizing the intractable likelihood function for the measured or incomplete data. EM algorithms update all paramete...

متن کامل

Space - Alternating Generalized Expectation - Maximization AlgorithmJe rey

| The expectation-maximization (EM) method can facilitate maximizing likelihood functions that arise in statistical estimation problems. In the classical EM paradigm, one iteratively maximizes the conditional log-likelihood of a single unobservable complete data space, rather than maximizing the intractable likelihood function for the measured or incomplete data. EM algorithms update all parame...

متن کامل

Space-alternating generalized expectation-maximization algorithm

The expectation-maximization (EM) method can facilitate maximizing likelihood functions that arise in statistical estimation problems. In the classical EM paradigm, one iteratively maximizes the conditional log-likelihood of a single unobservable complete data space, rather than maximizing the intractable likelihood function for the measured or incomplete data. EM algorithms update all paramete...

متن کامل

An Improved Ordered Subsets Expectation Maximization Reconstruction

Positron emission computerized tomography (PET) based on Ordered Subsets Expectation Maximization (OS-EM) is usually used to computerized tomography, which imposes the radionuclide to emission positron. But it also has some disadvantage as costing long time and bad reconstruction quality. Filtered Back Projection (FBP) that has many advantages such as simple structure and short reconstruction t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Signal Processing Letters

سال: 2021

ISSN: ['1558-2361', '1070-9908']

DOI: https://doi.org/10.1109/lsp.2021.3065600